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Worldwide Metro Cases

For various values of Ro, the reproductive rate of the disease: the number
of secondary cases from a single infectious individual introduced into a
completely susceptible pool
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‘ Worldwide Metro Cases
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Containment Application: International
AlIr Travel Restrictions

Delay global propagation

Buy time for vaccine development, distribution,
and nonpharmaceutical interventions

Shouldn’t make the epidemic worse for any
country...right?



Wrong: Restrictions Can Increase Cases!
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Counterintuitive:

Restrictions can make It worse.
Why?
Better mixing (a la classical ODEs)?



Nah...too few people fly
So, why?



Seasonality

Seasonality!
Suppose Hong Kong outbreak starts in US low season.
Restrictions do delay introduction into the US

But can delay until peak is in US high season...so it’s
worse!!

Must have a global model with planetary dynamics to
catch this.

Quite a useful thing to know before imposing restrictions.



We've gone from playground to planet.
Shift gears and think about social networks.



‘ Example 5. An Agent-Based Model
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An Agent-Based Smoking Model

“As Simple as Possible, but no Simpler” Einstein

We want a simple but revealing model

of the decision to smoke or not.

Q Simple
If U = Utility(Smoking) >0, then Smoke;
Otherwise Do Not Smoke.

0 Revealing

U =F (Networks, Messages, Psychology, Biology)




Build Up Decision Function

Individual Biology

o Addiction Function
Individual Psychology
o Reactance

o Skepticism

Social Network(s)

o Weighted
Information

o Messages



Physiology: factors leading to addiction

P(A)=probability of being addicted
P(A) depends on smoking rate, genetic

predisposition, other factors

Smoking Is dynamic; genetic
predisposition is fixed

Data from two studies

DiFranza et al. (2002)

O’Laughlin et al. (2003)
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- Discrepancy likely due to male/female ratio: [ 1:2, 1:1]
- Girls achieve symptoms of addiction in a median of 21 days.
- Boys achieve symptoms of addiction in a median of 183 days.



Social networks: friends and leaders

The USC (Valente) data

Who are your five best friends?

Who would be the best candidates to lead a class
project?

Know network for each of 86 classrooms



Network characteristics

Friend and leader networks have different
structures

Leader networks have superstars
Friend networks are more homogeneous

Both networks exhibit clustering of boys
and girls



A triends network from the survey




Synthetic networks

People with similar characteristics are
more likely to be friends.

Factor analysis determines the most
relevant characteristics.

Networks are generated by a probabllity
model calibrated from the data.



A synthetic network




Social networks

m \What are my friends doing?

socialCoefficient = ) weight; * friend,
=1




‘ Messages and risk aversion

O What message am I getting from “authorities?”

Normally [-1,0], no positive smoking message possible

message € [-1,0]
O To what degree do I believe it?
message* (1— skepticism)

O How risk averse am I?
risk _aversion *message * (1— skepticism)




Reactance

“ Assail my sense of personal control by telling me I cannot do something

and I will want to do it all the more” (Phares, 1991)

Reactance generally causes:

increased desire for proscribed behavior (“forbidden fruit”)

increased tendency to try (or to increase frequency of) the behavior

tendency to engage in even more extreme behavior

tendency to persuade “peers” to engage in the behavior

adoption of opposite/extreme view (“boomerang”)




Reactance: empirical evidence

Q Studies confirm basic theory, and link reactance to:

--age (adolescents maximally susceptible to reactance responses)

--particular personality types; measurable personality trait itself

Q0 Public health studies focus on persuasion & “forbidden fruit”

--substantial evidence on reactance and teen alcohol use

(on smoking , see Burgoon et al.)




‘ Messages and reactance

O What message am I getting from “authorities?”

O What is my reactance level?
message*reactance

If message = -1 and reactance = 1, this term equals -1

and ceteris paribus, I gain utility from smoking




‘ Putting 1t all together

Q U =F (Networks, Messages, Psychology, Biology)

a Utility = (social _coefficient)(weighted sum of network) -
(message)[(1-skepticism)(reactance + risk_aversion)] +
pleasure.

If U>0, agent decides to smoke;

Otherwise, agent decides to not smoke.




Runs on network data

O We've collected a large body of school network data.

O Reactance distribution on that data has big impact on
message effectiveness.




Z.ero Reactance.
Extreme Message (-1)Effective
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Case 1: Dispersed reactance




Case 1: Dispersed Reactance
Extreme Message (-1) Neutral

With reactant kids dispersed through the network (not concentrated
in a clique), the extreme negative message m=-1 neutral.
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Case 2: Concentrated reactance
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Case 2: Concentrated Reactance M=-1

However, the same extreme message backfires if
reactant kids are concentrated in the network.

---------------------------------------------------------------------------
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‘ Case 3: Concentrated Reactance M=-0.25

With concentrated reactance, a weaker
message does NOT backfire...no epidemic.
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Case 4. Dispersed Reactance M=-0.25

With dispersed reactance (Case 1), this weaker
message is as effective as the extreme one.

: M Count Smokers

B Count MonSmokers
1| M Count AddictedSmokers




Extreme messages can backfire.

O In networks where high reactance kids have high
weight and high degree, a message of -1 can increase
smoking.

O In networks where low reactance predominates, or
where high reactance kids are low weight and/or
low degree, the same message of -1 will be far more
effective.




‘ Finding the “Sweet Spot™

Suppose message of -.25 is strong enough to dissuade Tim,
but that he cares about his peer network. Suppose this is
dominated by high reactance kids. The -1 message sends the
reactant kids into smoking, and Tim goes along through
network effects.

By contrast, a message of -.25 is still strong enough to deter
Tim, and weak enough to avert the reactance catastrophe.

The Policy Goal

Find the message strong enough to deter Tim and NOT strong
enough to induce the reactance epidemic. This 1s the “sweet spot.”




‘ Tailored interventions

Q The sweet spot will vary among communities,
and will depend on:

--network structure (topology and weights),
--psychological patterns (skepticism, reactance, risk attitudes)

--biological patterns (addiction functions).

0 Hence, optimal messages must be heterogeneous,

tailored to specific communities, and adaptive over time.




Summary

Social network structure and heterogeneity
are critical to understanding the dynamic
Impact of different forms of intervention.

Intervention strategies must be targeted to
be effective.

More empirical studies are needed to
determine which policies yield best results
for particular groups of individuals.



Example 6. Obesity

Dr. Ross A. Hammond, Lead
Co-PI. Dr. Joshua M. Epstein,

CSED Collaborators: Dr. Peyton Young, Dr. Carol
Graham



Empirical Targets
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Change in BMI distribution 1960-2004
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1960 data (NHES): Mean=25.2, Median=24.5, N=6672
2004 data (NHANES): Mean=28.1, Median=27.1, N=5198
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An Explanatory Agent Model Should

Generate the Aggregate Time Series
Generate the Distributions

Generate the Heterogeneity by Group
...from the Bottom Up!




Model components

Physiology

Social influences

Individual psychology

Media, public health messages, etc.



Model in development. Slides deleted.
Please contact author for further information



General Bottom Line

In studying complex social dynamics, there Is
no alternative to models

In policy, there Is no alternative to judgment

Models like democracy

o The worst possible system, except for all the
others



Agent-Based Models

ABMs powerful for populations that are:
Heterogeneous

Boundedly Rational
Behaviorally Rich
Networked

Spatially Distributed

Locally Interacting
Accomodate All Scales

o from playground to planetary
Contagious

o Smallpox, Flu, TB, SARS...
Non-Contagious

o Chemical release

o Chronic: smoking, obesity
Can be Tested Empirically

O 0 0 0 0 O



Concluding Thought

“All models are wrong, but some are useful,”
George E. P. Box

Thank you
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